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Abstract

A simple expression for the interface resistance between two materials has

been derived by Schep et al. [J. Magn. Magn. Mater. 177, 1166 (1998).]

in terms of the transmission probability for electrons at the interface. This

approximation is tested for a simple model interface and good agreement is

found with solutions of the Boltzmann equation. Previously calculated values

of the transmission probability are used with this simple expression to evaluate

the spin-dependent interface resistances of a number of ferromagnetic-normal

metal interfaces. The agreement between the calculated results and the results

extracted from experiments on Cu/Co argue that the interface resistance may

not be dominated by defect scattering as is often assumed.

Giant magnetoresistance2 is the change of resistance when the magnetic alignment of

adjacent ferromagnetic layers separated by non-magnetic material is changed. The case in

which the current is perpendicular to the planes is referred to as current-perpendicular-

to-plane (CPP) giant magnetoresistance and has been reviewed by Bass et al.3 The semi-

classical theory for for this case has been developed by Valet and Fert.4 In the semi-classical

limit, the interfaces are separated enough that quantum interference effects due to reflection

from the interfaces can be neglected. If the interfaces are separated by more than a bulk mean

free path, the theory shows that the total resistance can be broken into contributions from

the bulk regions and to resistances associated with each interface. The theory also shows

how these interface resistances can be extracted from experiment. Generally, it is assumed
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that the interface resistance results from defects at the interface (interfacial roughness) or

interdiffused atoms. However, there is also an interface resistance for defect-free interfaces

due to the non-zero reflection coefficients at the interface.5

Schep et al.1 derived a simple form for the resistance of a single, defect-free interface

between materials A and B. To derive this form from the linearized Boltzmann equation

in the relaxation time approximation, they treat the bulk transport with an approximation

based on random matrix theory. The form they derive is

AR =
h

e2

[
1

Ttot
−

1

2

(
1

SA
+

1

SB

)]
, (1)

in terms of the areas of the Fermi surfaces (FS) projected in the direction of the interface

Si =
1

(2π)2

∫
FSi
d2K, (2)

for i = A, B and the transmission probability integrated over the Fermi surface

Ttot =
1

(2π)2

∫
FSA
d2KTA←B(k). (3)

The wave vector k is on the Fermi surface of material B and has a components perpendicular

to the interface K, which is the integration variable for the projection in the direction of the

interface. The resistance of an interface R is inversely proportional to the area of the interface

A, so the product AR is independent of the detailed geometry of the interface. The definition

of Ttot appears asymmetric because it only involves the transmission in one direction, but

because of microscopic reversibility, Ttot is the same for transmission in either direction. Even

though the existence of a meaningful interface resistance depends on there being enough

bulk scattering to eliminate quantum interference effects, the interface resistance in this

approximation, Eq. (1), is independent of the details of the bulk scattering.

Schep et al. applied Eq. (1) to interfaces between Co and Cu in the (111) and (110)

directions. However, they were not able to test its validity. In this paper, we test Eq. (1) in

a model system for which exact results are known, and then apply it to a series of interfaces.

We test Eq. (1) by considering a model interface inserted in an infinite free-electron

material. A stacking fault would be an example of this type of interface. The transmission
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probability across this interface is modeled by a simple expression in terms of two parameters.

In a previous paper,6 we described a method to numerically solve the linearized Boltzmann

equation, and used that method to compute the interface resistance for this model interface

as a function of the parameters that describe the transmission probability. Here we compare

those “exact” solutions with approximate solutions of the same model using Eq. (1).

For a sheet-like delta-function potential inserted in a free electron material, the trans-

mission probability depends on the perpendicular component of the electron wave vector,

kz as

TA←B(k) =
knz

αknF + knz
, (4)

with exponent n = 2. The dimensionless parameter α is proportional to the square root of

the strength of the delta-function potential. It determines the strength of the reflection. In

Ref. 6, we considered a generalized model for the transmission probability with n allowed

to take on other values and α parameterizing the strength of the reflection. These general-

izations are useful for testing the validity of various approximations, like the approximation

discussed in this paper. The choice n = 1 is analytically soluble. For this choice, the

approximation of Schep et al., Eq. (1), gives

AR =

[
2α

3πh

k2Fe
2

] [
1

3α

(
1

2
− α+ α2 log

1 + α

α

)−1
−

2

3α

]
. (5)

The first factor in squares braces is the result obtained by solving the linearized Boltzmann

equation in the relaxation time approximation (analytically for for this case).9 The second

factor can be expanded in a Taylor series for small 1/α as

1 +
1

12α
−

3

80α2
+ · · · . (6)

In the limit of large interface resistance, small 1/α, the result becomes quite good. The exact

result and the approximate result are compared in Fig. 1. Also shown in that figure are a

comparison for n = 2 and n = 8 between numerical solutions of the Boltzmann equation6

and analytic solutions of Eq. (1). This figure shows that for high resistance interfaces, the
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approximation gives reasonable results. For low resistance interfaces, the absolute error

decreases, but the relative error increases.

The approximation Eq. (1) is related to the relaxation time approximation because the

details of the bulk scattering do not enter into the interface resistance. As we showed in

Ref. 6, when the bulk scattering is treated without invoking the relaxation time approxima-

tion, there are deviations of up about 10% in the interface resistance. We expect there to be

similar deviations from Eq. (1) whenever the relaxation time approximation breaks down.

In Table I, we use Eq. (1) and previously published results for the transmission

probability,7,8 to compute values of the spin-dependent interface resistance for a series of

interfaces. We report the resistivities for the minority and majority electrons, AR↓ and AR↑

respectively, and the combinations

γ =
AR↓ −AR↑

AR↓ +AR↑
, (7)

and

AR∗ =
AR↓ +AR↑

4
, (8)

which are typically extracted from experiment. The results for Co/Cu(111) and Co/Cu(110)

are in good agreement with the results of Schep et al., which are based on the same model,

but make use of independent calculations of the transmission probabilities. The transmission

probabilities were calculated on uniform grids in the interface Brillouin zone using from 61

to 157 points in the irreducible wedges. These correspond to on the order of 500 points in

the full interface Brillouin zone. The uncertainty due to the k-space integrations are smaller

than the uncertainties due to the use of the approximation Eq. (1) and the local density

approximation. In the local density approximation, there are systematic errors in the shape

of the Fermi surface, which can lead to unknown errors in the interface resistance.

Some trends are clear from the results. The strongest asymmetries of any of the interfaces

are for the Au/Fe and Ag/Fe interfaces. For these interfaces, the strong reflection for the

minority states arises in large part because the states near the center of the interface Brillouin
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zone have very different symmetries for the two materials. The interfaces that have the lowest

symmetry, fcc(110) and bcc(112), tend to have the lowest asymmetries. The asymmetries

are positive for all combinations except for Fe/Cr, where the Fermi surface of paramagnetic

Cr is very similar to the minority Fermi surface of Fe, leading to weak reflection for those

spins.

The experimental results in Table I are from measurements on polycrystalline samples

with little information on the interface quality. The layer thicknesses are large enough

that quantum interference effects can be neglected. By analyzing the dependence of the

resistance on the thicknesses of the different layers, the bulk resistivities and the spin-

dependent interfaces resistances can be extracted. It could be that the measured interface

resistance is caused by reflection from the interface, as is assumed in the present model, or it

could be caused by diffuse scattering at the interface. The experimental values for Co/Cu are

close to the theoretical values for the (111) interface which is believed to be the predominant

orientation for polycrystalline samples. Actually, the results for Co/Cu are not very sensitive

to interface orientation. This agreement is at least consistent with an important contribution

from the interface reflection. However, the presence of both reflection and diffuse scattering

can affect the interface resistance in a complicated way.10 The magnitude of the interface

resistance for Ni80Fe20/Cu is close to the theoretical results for Ni, but the asymmetry, γ

is quite a bit higher than the theoretical results in Table I. This discrepancy might occur

because Ni80Fe20 is sufficiently different from Ni or because the interfaces are significantly

more disordered.

In summary, we have shown that the simple approximation for interface resistance derived

by Schep et al. works reasonably well for certain model interfaces. We have also shown that

the interface resistances calculated using this approximation and transmission probabilities

computed from first principles gives reasonably good agreement with interface resistances

determined experimentally. This agreement indicates that the measured interface resistances

might not be dominated by defect scattering as is often assumed.
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TABLES

AR↓ (fΩm2) AR↑ (fΩm2) γ AR∗ (fΩm2)

Au/Fe(100) 11.39 1.06 0.83 3.11

Ag/Fe(100) 12.86 1.07 0.85 3.48

Cr/Fe(100) 0.77 2.87 -0.58 0.91

Cr/Fe(112) 0.42 0.76 -0.28 0.30

Cr/Fe(110) 0.81 2.11 -0.44 0.73

Cu/Co(100) 2.31 0.31 0.76 0.65

Cu/Co(110) 2.54 0.55 0.64 0.77

Cu/Co(111) 1.95 0.43 0.64 0.60

Cu/Ni(100) 1.20 0.43 0.47 0.41

Cu/Ni(110) 1.52 1.08 0.17 0.65

Cu/Ni(111) 0.93 0.56 0.25 0.37

Co/Cu11 0.77±0.04 0.51±0.02

Co/Cu12 0.3 - 0.6 0.3 - 1.1

Co/Cu13 0.85±0.1 0.3±0.05

Ni80Fe20/Cu
14 0.81±.14 0.5±0.04

TABLE I. Spin-dependent interface resistances. The relationships between R↓, R↑, γ, and R∗

are given in Eqs. (7-8). The upper portion of the table are our theoretical results and the lower

portion gives experimental results. The interface orientations are not known in the experimental

systems.
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FIG. 1. Interface resistances. For the model interface described around Eq. (4), parameterized

by the variables n and α the solid lines give the interface resistance from a numerical solution of

the Boltzmann equation and the dashed lines give the approximate results based on Eq. (1).
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